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Eis article proposes a simple new logic for classifying
global vegetation. The critical features of this classifica-
tion are that 1) it is based on simple, observable, unam-
biguous characteristics of vegetation structure that are
important to ecosystem biogeochemistry and can be mea-
sured in the field for validation, 2) the structural charac-
teristics are remotely sensible so that repeatable and
efficient global reclassifications of existing vegetation will
be possible, and 3) the defined vegetation classes directly
translate into the biophysical parameters of interest by
global climate and biogeochemical models. A first test of
this logic for the continental United States is presented
based on an existing 1 km AVHRR normalized difference
vegetation index database. Procedures for solving critical
remote sensing problems needed to implement the classi-
fication are discussed. Also, some inferences from this
classification to advanced vegetation biophysical vari-
ables such as specific leaf area and photosynthetic capac-
ity useful to global biogeochemical modeling are sug-
gested.

INTRODUCTION

The accurate representation of terrestrial vegetation in
Earth Systems models has been a continuing challenge,
due to the incredible diversity found at global scales.
Vegetation responds to the range of climates, geomor-
phic substrates, natural disturbances, and human en-
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croachments occurring globally with an incredible array
of different species, growth habits, and even basic life-
forms. Global scientists have been faced with 1) devel-
oping a logic for simplifying vegetation into a smaller
array of critical attributes and 2) developing a means of
measuring vegetation globally. First attempts at devel-
oping a global vegetation database illuminated a variety
of problems of raw data availability, inconsistency of
historical vegetation definitions, and difficulty in trans-
lating taxonomic nomenclature to global modeling re-
quirements (Matthews, 1983).

Global vegetation databases have been developed
from published maps, atlases, and national databases
that attempt to represent existing vegetation (Matthews,
1983). These databases provide global models with a
generally realistic estimate of current landcover at coarse
spatial resolution. However, these databases suffer from
lack of consistency in vegetation classification used, vari-
able measurement techniques, and a variety of spatial
sampling resolutions. Not infrequently, 10,000 km? may
be sampled and represented by one 1 ha plot, and the
possibility of repeating the measurement may be nil.

Historically, global vegetation classifications have
been derived from bioclimatic analyses, virtually the
only global database available, the two best known being
by Holdridge and Koppen [recently reviewed by K. C.
Prentice (1990)). These and similar classifications use
simple temperature and water indices to define potential
vegetation types, and global distribution is inferred from
the global climate dataset. Recently, more ecologically
mechanistic logics have been derived (Woodward, 1987;
Prentice et al., 1992; Neilson et al., 1992; Neilson, 1993)
that define the geographic distributions of biomes based
on specific physiological responses of different plant
types to cold tolerance, growing season heat sums, and
drought stress. Because climate is an integral part of
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their classification schemes, a number of classes of equiva-
lent vegetation type, such as forests, are defined sepa-
rately as boreal / temperate / tropical forest, to provide
geographic specificity. These new biome models are
improving the ecological basis for global classification
of vegetation, but they produce maps of potential vegeta-
tion only.

Consequently, Townshend et al. (1991) argued that
the most essential new global vegetation classification
must be remote sensing driven, to provide a realistic
measure of existing landcover. Use of a consistent, re-
mote sensing based measurement regime could also
eliminate the ambiguities currently extant in global veg-
etation maps derived from varying methodologies and
definitions. However, current remote sensing capabili-
ties cannot produce the large number of landcover
classes usually defined, particularly because climate
classes are usually part of the definition (Loveland et
al., 1991). Townshend et al. (1991) also found that
because there is no clearly defined set of vegetation
characteristics used for these classifications, there is
significant disagreement among authors of the existing
global extent of different biome classes. A simpler logic
based only on clearly observable plant physiognomic
characteristics is needed.

If a comparable map of existing global vegetation
cover could be derived, a very useful evaluation of global
change could be done by comparing the climate defined
potential maps with the remote sensing defined existing
biome maps. Estimates of the amount of the global land
surface perturbed from its original vegetation range
between 10% and 20%, and the amount is increasing
annually at unknown rates, a critical dynamic factor to
monitor in global change research (Townshend et al.,
1991).

The development of realistic global models of cli-
mate, carbon cycles, hydrology, etc. all rely on an unam-
biguous, repeatable definition of the existing terrestrial
vegetation. Each cell of a global model is defined with
a certain landcover, and from that definition a number
of biophysical parameters are derived for use in the
energy and mass flux calculations of the model. Most
global climate and biogeochemical models immediately
translate the landcover classes into biophysical parame-
ters, such as leaf area index, roughness length, and
surface conductance (Dickinson et al., 1986; Sellers et
al, 1986; Henderson-Sellers and Pitman, 1992). The
newest GCMs are planning to define seasonally dynamic
landcover based on vegetation phenology (Henderson-
Sellers, 1990), a capability offered by the daily repeat
time of the AVHRR sensor (Loveland et al., 1991; Lloyd,
1990).

Additional parameterization requirements are
needed by global carbon cycle models, for example, of
leaf or canopy geometry (broadleaf, needleleaf, or grass)
for gas exchange calculations. Plant carbon cycles are

also strongly controlled by canopy longevity, deciduous
versus evergreen habit, and physiological capacity, such
as maximum photosynthetic rate (Korner, 1993). The
continued development of global models is becoming
hindered by the lack of an agreed upon classification
logic from which to begin building these model parame-
terization datasets.

The objective of this article is to introduce a new
logic for global vegetation classification that could solve
a number of the problems stated. The logic 1) is based
on simple, observable, unambiguous characteristics of
vegetation structure that are important to ecosystem
biogeochemistry and could be measured in the field for
validation, 2) is remotely sensible so that repeatable
global reclassifications of existing vegetation will be
possible, and 3) directly translates into the biophysical
parameters of interest by the global climate and biogeo-
chemical models, including the ability for some ad-
vanced inferences of important vegetation properties
that are not remotely sensible. Important to this logic
is the explicit separation of climate from the vegetation
classification, to allow the classification to be based purely
on observable remotely sensed vegetation properties.
Temperate, tropical, boreal, etc. designations can later
be added with specific ranges of temperature and pre-
cipitation to produce refined subclasses for comparison
with the potential biome classifications of Prentice et
al. (1992) and Neilson (1993).

CLASSIFICATION LOGIC

We suggest that a complete global vegetation classifica-
tion be derived from combinations of three primary
attributes of plant canopy structure. These attributes
are 1) permanence of aboveground live biomass, 2) leaf
longevity, and 3) leaf type (Fig. 1). Possible combinations
of these three vegetation attributes yield only six funda-
mental vegetation classes, although they occur across a
range of climates, which we will deal with separately.
The first criteria of the classification defines whether
the vegetation retains perennial or annual above-ground
biomass, a critical question for seasonal climate and
carbon balance modeling. This class separates vegeta-
tion with permanent respiring biomass (forests and
woody stemmed shrubs) from annual crops and grasses
that go through nongrowing season periods as seed
or below-ground structures only. Consequently, this
criteria represents a very fundamental life cycle distinc-
tion between these types of plants. This criteria also
allows inference of some critical physiological attributes
of plants. For example, in a global synthesis of plant gas
exchange rates, Korner (1993) found on average that
annual plants maintained 50% higher leaf photosyn-
thetic capacity than perennial plants. Biomass perma-
nence, as it relates to plant height also is the major
vegetation determinant of the surface roughness length
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Global Vegetation Classes from Remote Sensing
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parameter that climate models require for energy and
momentum transfer equations. The proposed distinction
merely requires that remote sensing be able to detect
presence / absence of aboveground biomass during the
nongrowing season.

The next step of the classification, leaf longevity, or
often termed evergreen versus deciduous canopy, is an
extremely critical variable in carbon cycle dynamics of
vegetation, and is important for seasonal albedo and
energy transfer characteristics of the land surface. This
leaf longevity class defines whether a plant must com-
pletely regrow its canopy each year, or merely a portion
of it, with direct consequences to ecosystem carbon
partitioning, leaf litterfall dynamics, and soil carbon
pools. Reich et al. (1992) suggest that canopy conduc-
tance and maximum photosynthetic rate are inversely
proportional to leaf longevity. Hence, certain global
attributes of canopy gas exchange capacity may be in-
ferred based on this leaf longevity criteria.

To make the class discrimination simple enough to
be remotely sensed and for compatibility with existing
vegetation schemes, we define only leaf longevities of
less than or greater than one growing season, effectively
evergreen versus deciduous. Most needle-leaved biome
types are evergreen, the exception being the deciduous
conifer Larix, or larch forests of temperate and boreal
regions. Most grasses are deciduous, but this criteria
separates evergreen broadleaved forests and shrublands
from deciduous forests, annual crops, and climate-
dependent annual vegetation such as desert and tundra.

The third classification criteria defined is a simple
leaf type or shape. Based on both the spectral / optical
properties of leaves and their gas exchange characteris-
tics, we feel only three leaf types need to be defined,
needleleaved, broadleaved, and grasses. The needle-

leaved and grass classes are fairly straightforward repre-
sentations of those vegetation types; however, the broad-
leaf class includes trees, shrubs, herbs, and crops that
fit this leaf type criteria. Hence, the third criteria re-
quires the sequential solution of the first two criteria
(perennial / annual and evergreen/deciduous) to pro-
vide meaningful discrimination of vegetation. This crite-
ria also allows significant specificity in defining some
key ecological parameters for biogeochemical modeling.
Running and Hunt (1993) defined a maximum stomatal
conductance for three lifeforms of 1.6 mm s-!, 2.5 mm
s7!, and 5.0 mm s~! for evergreen needleleaved forest,
deciduous broadleaved forest, and annual grass, respec-
tively.

After this three step classification, climate descrip-
tors can be included from a variety of sources. Mean
global climate data can be used to derive subclasses
like tropical / temperate / boreal from either classic Hol-
dridge or Koppen type schemes (K. C. Prentice, 1990)
or newer rule based bioclimate models (Prentice et al.,
1992; Neilson, 1993). The difference between previous
classifications and ours is that we have defined specific
vegetation attributes that are remotely sensible, and cli-
mate is independently added so as to simplify the classifi-
cation logic.

A FIRST AVHRR BASED IMPLEMENTATION

We tested whether this logic would provide meaningful
vegetation discrimination using current satellite systems
with the procedures described below. Virtually all cur-
rent remote sensing based global vegetation analysis is
done with the daily polar-orbiting Advanced Very High
Resolution Radiometer (AVHRR). The well-known nor-
malized difference vegetation index (NDVI) is the most
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commonly used measure of vegetation, and a long litera-
ture of studies exists on NDVI (Justice et al., 1985;
Goward et al., 1987; Loveland et al., 1991). The specific
challenge in this article is to propose an NDVI-based
analysis for making the three decisions required in our
classification hierarchy. The strength of global NDVI
data is the high temporal information content. The
common compositing time of 10-14 days provides at
least 25-30 global NDVI datasets per year. Thus, be-
yond the absolute NDVI value, we propose that the
seasonal dynamic of the NDVI can define important
attributes of vegetation phenology (Fig. 2). It should be
recognized that quantitative use of the NDVI requires
a high quality NDVI product, for which sun angle and
view angle normalization and atmospheric corrections
have been done, so that the final reflectances are maxi-
mally sensitive to the vegetation (Goward et al., 1991).
Early global NDVI products have done none of these
corrections beyond temporal compositing.

We have executed a first test of this logic, for the
United States where 1-km AVHRR data and a compre-
hensive landcover database were already available. In
this exercise, the 159 seasonal land cover regions origi-
nally defined in Loveland et al. (1991) were translated
into the three attribute criteria and then combined into
the six classes defined in Figure 1. Images illustrating
the component binary decision logic of Figure 1 were
produced to evaluate the problems and potential inher-
ent in this classification scheme.

Decision 1—Perennial or Annual Above-Ground
Biomass

The most direct distinction of perennial versus annual
vegetation is the presence or absence of live above-
ground biomass in the nongrowing season (Fig. 3). Note
that this simple discrimination separates all forests

guish perennial from annual above-ground bio-
mass types using minimum thresholds, and leaf
longevity, or evergreen from deciduous classes
using NDVI amplitude.

Winter

(broadleaf and evergreen) and shrublands from grass-
lands, crops, and desert/tundra ephemeral vegetation.
The Great Plains grasslands form the largest continuous
class of defined annual vegetation, with the midwest
and Mississippi River agricultural areas clearly delin-
eated. We acknowledge that many grasses survive the
nongrowing season with perennial root systems, so are
technically not annuals. However, grasses are function-
ally most similar to annual plants, so we include them
in that vegetation class. The desert Southwest is defined
as perennial despite sparse cover due to the perennial
pinyon-juniper shrubs that dominate that landscape.
Clearly the causal factors involved here are a combina-
tion of climate constraints and / or human perturbation.

Two thresholds were used to distinguish vegetated
from nonvegetated land in the nongrowing season. One
is a minimum NDVI threshold; 0.1 was used in Loveland
et al. (1991), below which the pixel is considered non-
vegetated. The second logic evaluates the time period
of NDVI above a threshold, a greenness duration, given
in days. Longer greenness duration implies perennial
vegetation.

We are concerned that those NDVI thresholds
alone will not provide a globally applicable logic, so
alternative analyses to NDVI are also being considered.
Although the NDVI is usually higher over vegetated
than nonvegetated areas regardless of the presence of
green leaf area, the best discrimination may be done
with single AVHRR Channel 1 data alone, of shortwave
reflectance. For example, in seasonally snow-covered
areas, permanent vegetation stands above the ground
snow cover, while areas of annual vegetation show a
purely snow covered surface. Alternatively, addition of
surface temperature from the AVHRR thermal Channels
4 and 5 has improved biome type discrimination. Non-
vegetated surfaces have much lower thermal inertia



than vegetated surfaces, so surface temperature ex-
tremes may identify nonvegetated areas (Nemani et al.,
1993). We recognize that choosing a single general logic
for processing Decision 1 globally may be difhicult, so
plan an active testing of alternative analyses in the near
future.

Decision 2—Evergreen or Deciduous Canopy

The second decision in the hierarchy of Figure 1 is to
discriminate deciduous from evergreen vegetation. This
decision is already partly answered in Decision 1, annual
vegetation is always deciduous; but, among perennial
vegetation, the distinction between evergreen and de-
ciduous separates major forest types and shrub types.
The image representing the simple dichotomy of Deci-
sion 2 lumps all of the annual grasses and crops from
Decision 1 with the eastern deciduous forests (Fig. 4).
The evergreen perennial class, primarily conifer forests
of the West and Southeast remain rather constant be-
cause of limited areas of evergreen-deciduous forest
mixing.

The seasonal amplitude of NDVI, the difference
between the lowest NDVI before spring leaf growth,
the peak midsummer NDVI usually provides a clear
distinction between evergreen and deciduous vegetation
(Fig. 2) (Loveland et al,, 1991). Evergreen vegetation
retains a much higher year around NDVI due to continu-
ous foliage, so that the NDVI amplitude is much smaller
(Spanner et al., 1990). However, much of the apparent
seasonal trend of simple NDVI products actually relates
to changing illumination angle (Goward et al.,, 1991).
These optical effects must be removed in future NDVI
datasets to make the quantitative evaluations of NDVI
dynamics proposed here.

Decision 3— Needleleaf, Broadleaf, or Grass

The final Decision 3 distinguishes needleleaf versus
broadleaf versus grass, three fundamental leaf types
with highly contrasting energy transfer and ecological
characteristics (Fig. 5). This discrimination is the most
difficult from current remote sensing. Nadir viewing
AVHRR data produces variable reflectances at the two
extreme classes; evergreen needleleaf forest and grasses
are often readily distinguished because of large albedo
differences. Loveland et al. (1991) found that the ever-
green forests that predominate in the Pacific Northwest
and Southeast were clearly discriminated by both “dura-
tion of greenness” and “onset of greenness” seasonal
NDVI criteria. The Great Plains grasslands are also
consistently separated by these criteria.

The large variety of broadleaf vegetation, ranging
from the deciduous forests, to western sagebrush would
be very difficult to discriminate from NDVI alone. How-
ever, if the initial Decisions 1 and 2 discriminations are
done correctly, this final decision is much more tracta-
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ble. If necessary, because evergreen needleleaf forests
and evergreen broadleaf forests rarely intermix geo-
graphically, they could be separated by simple climate
zones. The deciduous needleleaf tree Larix intermixes
with deciduous broadleaf forests in temperate regions
of North America and Asia.

A variety of vegetation types fall into the broadleaf
annual class, including most crops, and many desert and
tundra types in climates too harsh to sustain perennial
plant life. For purposes of biophysical parameterization,
these plant types can all be defined together, and so
form the final class of this remote sensing based logic.
However, when finer discrimination is required, the
climatic subclassification easily separates agricultural
crops from drought-limited deserts and temperature-
limited tundra. Even without explicit climate definition,
the time integration of NDVI, or the simple growing
season duration in days defined by NDVI seasonality,
discriminates these classes (Loveland et al., 1991).

We suggest a more general solution may involve
differentiating the bidirectional reflectance distribution
function (BRDF) of these canopy types (Fig. 6). Vegeta-
tion canopies are not anisotropic; their reflectance and
shadowing changes directionally with illumination and
view angles. The use of directional reflectances to im-
prove these vegetation discriminations could be a spe-
cific application of the theoretical work in canopy radia-
tive transfer modeling currently under way (Asrar et al.,
1992; Myeneni et al., 1990; Li and Strahler, 1992). Since
AVHRR viewing geometry extends to 55° off-nadir,
specific processing of this off-nadir data may allow test-
ing of the utility of directional data. However, the nor-
mal NDVI compositing procedures cannot be used,
because the maximum value logic usually selects against
off-nadir pixels (Goward et al., 1991). Currently avail-
able directional airborne sensors such as the Airborne
Solid-State Array Spectroradiometer (ASAS) (Irons et
al., 1991) provide a better testbed for these BRDF
theoretical studies, and could be flown over complex
landcovers for tests. High spectral resolution data from
the Airborne Visible and Infrared Imaging Spectrometer
(AVIRIS) may also improve the difficult detection of
needleleaf, broadleaf, and grasses because of spectral
sensitivity of BRDFs.

The final vegetation classification, the intersection
of the three decision classes, describes six different basic
classes or lifeforms of global vegetation from Figure 1.
A first test of this complete logic, for the United States
where 1-km AVHRR data were already available, is
shown in Figure 7. There were clear advantages to
mapping vegetation based on the logic in Figure 1,
compared to the original classification of Loveland et
al. (1991). In the original classification, almost 85%
(60 of 71) of the preliminary regions defined by initial
spectral-temporal clustering algorithms of the NDVI
data contained multiple land cover types that required
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Figure 3. An image of the continental United States illustrat-
ing the distinction defined in Decision 1 between vegetation
with perennial or annual above-ground biomass, derived

from the 1-km landcover database of Loveland et al. (1991).
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Figure 4. Implementation of Decision 2, distinguishing be-
tween evergreen and deciduous vegetation types, from the
database of Loveland et al. (1991).

Figure 5. The three class discrimination produced by Deci-
sion 3, among needleleaf, broadleaf, and grass leaf type vege-
tation, derived from the database of Loveland et al. (1991).
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Figure 7. A final map of the six proposed vegetation classes
for the continental United States derived from the 1-km
land classification database of Loveland et al. (1991).
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use of elevation, climate, and ecoregion variables to
eliminate confusion. However, when translating the
original 71 classes to the logic in Figure 1, only 28%
contained unacceptable attribute conflicts. The empha-
sis on structural aspects of vegetation rather than floris-
tic or taxonomic elements clarifies the spectral and
temporal classification process considerably.

In all cases, confusion points involved the separation
of land into perennial versus annual above-ground bio-
mass when annual irrigated broadleaf crops shared a
similar NDVI temporal profile with high elevation ever-
green needleleaf forests in the western United States.
The NDVI signal in these forests was reduced during
the fall, winter, and spring due to snowcover, while the
harvested crops were also reduced in NDVI. In the
spring, the melting of snow produced a perceived “onset
of greenness” nearly identical to the germination of
these row crops.

CLASSIFICATION ENHANCEMENTS

Our goal here is a classification procedure that is accu-
rate, computationally efficient, and minimizes the need
for multiple satellite sensors and ancillary data. Our
initial priority is to test how well seasonal NDVI data
alone can implement the three decisions required in
Figure 1. As we identify specific problems that cannot
be solved by NDVI data alone, we will proceed to
more complicated solutions. The use of AVHRR thermal
infrared data in conjunction with NDVI is an efficient
way in some situations to enhance biome discrimination
while working from the same AVHRR database (Nemani
et al., 1993).

Standardized global databases can also be used
efficiently to make discriminations beyond the capability
of the NDVI. The most available and important global
datasets to enhance vegetation discrimination will be
topography and average climate. Digital topographic
data is already available, although at varying resolutions
for each continent (Brown et al., 1993). The discrimina-
tion problem found between snow-covered evergreen
needleleaf forest and annual crops may be most easily
resolved by identifying mountainous areas with the topo-
graphic database. The biome distribution logic of Pren-
tice et al. (1992) and Neilson et al. (1992) provide
specific climatic thresholds that allow definite exclusion
of certain biome types from certain climatic regimes.
Evergreen needleleaf forests do not occur in tropical
areas where monthly temperatures remain above 5°C
(Prentice et al., 1992). Available moisture limits the
distribution of perennial forests such that an annual
precipitation map could be used to verify discrimina-
tions between forests and grasslands.

The vegetation variable of greatest utility that was
not included in this original classification logic is vegeta-
tion height. Plant canopy height is a necessary compo-
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nent of roughness length parameters used by climate
models, and is highly related to the permanance of
the vegetation: Trees are taller than grasses and crops.
However, at 1-km pixel resolution, we see no way that
tree height can be remotely sensed by AVHRR type
sensors. If even a modest definition of canopy height
classes were possible with, for example, synthetic aper-
ture radar, canopy height would be added to our classi-
fication logic as an additional discriminator.

FUTURE REMOTE SENSING CAPABILITIES

With the launch of the NASA Earth Observing System
in 1998, implementation of this global vegetation classi-
fication should be easier and even more accurate. The
Moderate Resolution Imaging Spectrometer (MODIS)
is the daily global coverage sensor for EOS. MODIS
has nested spatial coverage of 250 m, 500 m, and 1
km at nadir and 36 spectral channels. The radiometric
accuracy, sensor calibration, image navigation, and at-
mospheric corrections planned for MODIS will dramati-
cally improve the quality of satellite vegetation index
products, and of derived products like this global vegeta-
tion classification (Running et al., 1994). Additionally,
the directional analyses of BRDF suggested in Figure
6 will be possible from another EOS sensor, the Multiangle
Imaging Spectroradiometer (MISR) (Diner et al., 1992).

The classification test in this article was done using
2-week maximum composite NDVI datasets (Eiden-
shank, 1992), but at the original 1.1-km pixel resolution,
rather than the spatially subsampled AVHRR data used
in GAC and GVI datasets. A number of improved spec-
tral vegetation indices are already being developed and
tested with current AVHRR data. These new indices
aim to reduce atmospheric and soil background influ-
ences on NDVI, and include the global environmental
monitoring index (GEMI) (Pinty and Verstaete, 1992),
soil-adjusted vegetation index (SAVI) (Huete et al.,
1992), and the atmospheric resistant vegetation index
(ARVI) (Kaufman and Tanré, 1992). These new remote
sensing products, when implemented globally, should
improve discrimination ability for the vegetation types
in this classification scheme.

INFERRED ECOSYSTEM VARIABLES

An important requirement of this classification was that
the final classes be easily translatable to biophysical
parameters for global modeling. Basic principles relating
simple plant structure to physiological activities of plants
have emerged from recent ecological research (Field
and Mooney, 1986; Reich et al., 1991; Gower and Rich-
ards, 1990). The common inference logic relates climate
to leaf area index and specific leaf area, then to photosyn-
thetic capacity, leaf nitrogen, and lignin concentrations.

Important new syntheses of a wide variety of ecolog-
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ical field data from different biome types are finding a
number of causal relationships between leaf longevity
and important ecosystem variables (Gower and Rich-
ards, 1990; Reich et al., 1992; Pierce et al.,, 1994;
Korner, 1994):

Leaf longevity = specific leaf area (m?/kg)

leaf nitrogen % (g/ g)

maximum leaf conductance
(mmol/m?/s)

maximum photosynthetic rate
(mmol/g/s)

relative growth rate (m/month)

production efficiency

(kg/kg/yr).

Although the specific functions relating all of these
variables are complicated and beyond the scope of this
article, they represent very stable and useful principles
of plant structure to function that are appropriate gener-
alities for representing vegetation globally. These rela-
tionships are important to global ecology because leaf
longevity may be the most directly measured by re-
motely sensed greenness duration or similar seasonal
NDVTI analyses (Fig. 2) (Loveland et al., 1991). Conse-
quently, these important ecosystem variables that could
never be remotely sensed directly, now may be inferred
with some confidence for global biogeochemical model-
ing. Korner (1994) has synthesized existing field data of
leaf conductances and photosynthesis rates into basic
principles for global modeling. Pierce et al. (1994) have
tested the strength of these general principles with
field data from a climatic transect of evergreen forests.
Running and Hunt (1993) have explored the basic com-
parison of physiological factors required to parameterize
evergreen forests, broadleaf forests, and grasslands with
these simple inferences.

Future versions of this classification may even treat
leaf longevity as a continuous variable, rather than the
binary choice evergreen/deciduous in order to better
exploit the inferences of ecosystem properties produced
by this logic. These new principles for defining biophysi-
cal parameters for global vegetation could, when imple-
mented, dramatically improve the realism of future
global biogeochemical models. More biome specific pa-
rameterization of vegetation functional characteristics
will allow substantially more defensible analyses of po-
tential responses by the terrestrial biosphere to future
global changes in climate, atmospheric chemistry, and
hydrology.

The vegetation parameters of greatest interest to
climate modeling are leaf area index, albedo, maximum
surface conductance, and roughness length (Dickinson
et al., 1986; Dorman and Sellers, 1989). Albedo is di-
rectly retrieved from AVHRR Channels 1 and 2 after
the removal of atmospheric effects; however, the trans-
formation of AVHRR / NDVI to estimated leaf area index

requires knowledge of the vegetation class (Spanner et
al,, 1990). Hence, after determining the vegetation class
from the logic in this article, the calculation of LAI
should be more straightforward. Estimates of roughness
length may be improved given knowledge of the six
classes in this article, trees will always have longer
roughness lengths than grasses or crops, for example.
However, further definition of roughness length will
require some estimation of canopy height, which we do
not see as possible with current AVHRR data. The
maximum leaf conductance that is inferred above from
leaf longevity is directly analogous to the minimum
surface resistance used for vegetation parameterization
in the GCMs.

Although some GCMs define many vegetation classes
(BATS currently defines 15; R. Dickinson, personal com-
munication) the unique parameter specification sets for
the above vegetation variables warrants a much smaller
number of classes. Most of the 15 cover classes used in
BATS are defined with the same maximum LAIL 6, the
same minimum surface resistance, 250 sm~! (4 mm s ™!
surface conductance). Each of our six vegetation classes
will have a unique set of biophysical attributes which
will be finalized in a later paper. For example, Running
and Hunt (1993) defined the following parameters for
evergreen needleleaf forest, deciduous broadleaf forest,
and grass, respectively: maximum LAI 10, 6, and 3; specific
leaf area 25 m? kg °C, 75 m? kg °C, and 25 m? kg °C;

maximum leaf conductance 1.6 mm s~ !, 2.5 mm s~ !,

and 5.0 mm s~ L.

GCMs also typically require a fractional vegetation
cover definition for each cell; however, this classification
is implemented at 1-km resolution, such that a fractional

cover could be computed for any GCM cell size.

CONCLUSIONS

We think that this classification logic successfully meets
the requirements set forth in the introduction: unambig-
uous, remotely sensible, and translatable into biophysi-
cal parameters. However, we recognize that this classi-
fication logic is not sufficient for all users of global
landcover classifications. We acknowledge that for some
purposes, particularly social and economic analyses, more
exacting classifications are required. We recommend
that, rather than starting from different logic, these
other classifications build hierarchically from ours. Our
evergreen needleleaf forest class could easily be subdi-
vided locally at a next level into common forest species
mixtures. The broadleaf annual class could be subdi-
vided into various crop designations. Then, a multistep
processing could be developed with the first step being
these initial remote sensing based classes, followed by
a second more detailed processing, possibly including
supervised classification techniques, time series analysis,
etc. in an expert systems context. The final product



would retain the benefits of our remote sensing based
classification, while providing the enhanced classifica-
tion needed for these other purposes.
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